Hukum Kirchoff dan Penerapannya

A. Hukum Arus Kirchoff

Hukum Arus Kirchoff membicarakan tentang arus listrik pada titik percabangan suatu kawat. Tinjau sebuah titik percabangan pada suatu kawat, sebut titik A, seperti yang diperlihatkan pada Gambar 1 di bawah ini.

Gambar 1 Arus pada Percabangan suatu Kawat

Arus I1 dan I2 menuju (masuk ke) titik A, sedangkan I3 dan I4 menjauhi (keluar dari) titik A. Jika aliran arus dianalogikan sebagai aliran air dalam pipa, Anda tentu akan yakin bahwa jumlah aliran air sebelum melewati titik A akan sama dengan jumlah air sesudah melewati titik A.

 

Demikian pula dengan arus listrik, jumlah arus listrik yang menuju (masuk ke) titik percabangan (titik A) sama dengan jumlah arus yang menjauhi (keluar dari) titik percabangan tersebut. Dengan demikian, pada Gambar 1, secara matematis diperoleh

atau 

Persamaan terakhir secara matematis dapat ditulis

yang berarti bahwa jumlah arus listrik pada suatu titik percabangan sama dengan nol. Persamaan (1) disebut Hukum Pertama Kirchoff atau Hukum Arus Kirchoff. Perlu diingat bahwa ketika Anda menggunakan Persamaan (1), arus yang masuk ke titik percabangan diberi tanda positif, sedangkan arus yang keluar dari titik percabangan diberi tanda negatif.

B. Hukum Tegangan Kirchoff

Hukum Tegangan Kirchoff didasarkan pada Hukum Kekekalan Energi. Ketika muatan listrik q berpindah dari potensial tinggi ke potensial rendah dengan beda potensial V, energi muatan itu akan turun sebesar qV. Sekarang tinjau rangkaian listrik, seperti diperlihatkan pada Gambar 2.

Gambar 2 Muatan listrik yang Mengalir dalam Lintasan Tertutup Memenuhi Hukum Kekekalan Energi.

Baterai dengan tegangan terminal V akan melepas muatan q dengan energi qV sedemikian sehingga mampu bergerak pada lintasan tertutup (loop) abcda. Ketika muatan q melintasi resistansi R1, energi muatan ini akan turun sebesar qV1. Demikian pula ketika melintasi R2 dan R3, masing-masing energinya turun sebesar qV2 dan qV3. Total penurunan energi muatan adalah qV1 + qV2 + qV3.

 

Sesuai dengan Hukum Kekekalan Energi, penurunan ini harus sama dengan energi yang dilepaskan oleh baterai, qV. Dengan demikian berlaku

Persamaan terakhir dapat ditulis

yang berarti bahwa jumlah tegangan pada sebuah loop (lintasan tertutup) sama dengan nol. Persamaan (2) disebut Hukum Kedua Kirchoff atau Hukum Tegangan Kirchoff.


C. Penerapan Hukum Kirchoff pada Rangkaian Sederhana

Rangkaian sederhana adalah rangkaian yang terdiri dari satu loop. Sebagai contoh, tinjau rangkaian pada Gambar 3. Tidak ada titik percabangan di sini sehingga arus pada setiap hambatan sama, yakni I dengan arah seperti pada gambar. Pilih loop a-b-c-d-a.

Gambar 3 Rangkaian Listrik Sederhana

Ketika Anda bergerak dari a ke b, Anda menemui kutub negatif baterai terlebih dahulu sehingga GGLnya ditulis Vab = E1. Ketika Anda melanjutkan gerakan dari b ke c, Anda mendapati arah arus sama dengan arah gerakan Anda sehingga tegangan pada R1 diberi tanda positif, yakni Vbc = +IR1. Dari c ke d kembali Anda menemui GGL dan kali ini kutub positifnya terlebih dahulu sehingga diperoleh Vcd = +E2. Selanjutnya, tegangan antara d dan a diperoleh Vda = +IR2. Hasil tersebut kemudian dimasukkan ke dalam Persamaan (2).

atau

sehingga diperoleh

Persamaan terakhir dapat ditulis sebagai berikut.

Dengan demikian, untuk rangkaian listrik sederhana, besarnya arus listrik yang mengalir pada rangkaian dapat dicari menggunakan Persamaan (3). Akan tetapi, jangan lupa ketika memasukkan nilai GGLnya, Anda harus tetap memerhatikan tanda GGL tersebut.


D. Penerapan Hukum-hukum Kirchoff pada Rangkaian Majemuk

Rangkaian majemuk adalah rangkaian arus searah yang lebih dari satu loop. Salah satu cara untuk menganalisis rangkaian majemuk adalah analisis loop. Analisis ini pada dasarnya menerapkan Hukum-hukum Kirchoff, baik tentang arus maupun tegangan.

Gambar 4 Analisis Loop pada Rangkaian Majemuk

Berikut adalah langkah-langkah untuk menganalisis rangkaian majemuk pada Gambar 4 di atas menggunakan analisis loop.


1) Tandai titik-titik sudut atau titik cabang rangkaian, misalnya titik a, b, c, d, e, dan f.

2) Tentukan arah arus pada tiap cabang, sebarang saja, sesuai keinginan Anda. Lalu, gunakan Persamaan (8–10) untuk mendapatkan persamaan arusnya.

3) Tentukan titik tempat Anda mulai bergerak dan lintasan yang akan Anda lalui. Misalnya, Anda ingin memulai dari titik a menuju titik b, c, dan d lalu ke a lagi maka yang dimaksud satu loop adalah lintasan a-b-c-d-a. Lakukan hal yang serupa untuk loop c-d-e-f-c.

a) Jika Anda melewati sebuah baterai dengan kutub positif terlebih dahulu, GGL diberi tanda positif (+E). Sebaliknya, jika kutub negatif lebih dulu, GGL diberi tanda negatif ( E).

b)  Jika Anda melewati sebuah hambatan dengan arus searah loop Anda, tegangannya diberi tanda positif (+IR). Sebaliknya, jika arah arus berlawanan dengan arah loop Anda, tegangannya diberi tanda negatif (IR).

4) Masukkan hasil pada langkah 3 ke Persamaan (2).

5) Beberapa persamaan yang Anda dapatkan, Anda dapat melakukan eliminasi untuk memperoleh nilai arus pada tiap cabang.


E. Penerapan Hukum Arus Kirchoff dan Hukum Ohm pada Rangkaian Majemuk

Selain analisis loop, analisis simpul juga dapat digunakan untuk menganalisis rangkaian majemuk. Analisis ini menerapkan Hukum Arus Kirchoff dan Hukum Ohm. Berikut adalah langkah-langkah untuk menerapkan analisis simpul pada rangkaian majemuk yang diperlihatkan pada Gambar 5.

Gambar 5 Analisis Simpul pada Rangkaian Majemuk

1) Pilih salah satu titik (simpul), misal A, sebagai acuan dengan tegangan nol (ground) dan titik (simpul) lainnya, misal B, anggap memiliki tegangan V terhadap ground, yakni VBA = V.

2) Pilih semua arus pada tiap cabang, yakni I1, I2, dan I3, berarah dari B ke A.

3) Jika pada cabang arus terdapat baterai (GGL), perhatikan kutub baterai yang ditemui arah arus. Jika arus yang Anda misalkan masuk ke kutub positif baterai, arus pada cabang tersebut memenuhi persamaan.

dengan subcript c berarti cabang. Sebaliknya, jika arus yang Anda misalkan masuk ke kutub negatif baterai, arus pada cabang tersebut memenuhi persamaan

4) Terapkan Hukum Arus Kirchhoff sebagai berikut.

5) Masukkan I pada langkah 3 ke langkah 4 maka Anda akan memperoleh nilai V.

6) Untuk mendapatkan arus pada tiap cabang, Anda tinggal memasukkan nilai V hasil langkah (5) ke persamaan I pada langkah (3).

 

Sumber:  Saripudin, A., Dede R.K., & Adit S. 2009. Praktis Belajar Fisika 1. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional.

0 Comments:

Post a Comment